Statistics

Spring 2023
Lecture 18

Feb 19-8:47 AM

Class QE 3:
Given $P(A)=.7, P(B)=.6, P(A$ and $B)=.5$

1) $P(\bar{A})=1-.7=.3 \mathrm{~V} \quad$ 3) Construct Venn Diagram. $P(\bar{A})=1-P(A) \quad P(A$ on 14$)=$
2) $P(A \circ \gamma B)=$ $.7-.5=.2$
$.7+.6-.5=.8 \quad \cdot 6-5=0.1$
$P(A)+P(B)-P(A$ and $B)$

3) $P($ Aonly $O R$ Bonly $)=.2+.1=.3$
4) $P(\bar{A}$ and $\bar{B})=P(\bar{A}$ or $B)=1-P(A$ or $B)=1-.8=.2$

De Morgan's Law
6) $P(\bar{A}$ or $\bar{B})=P(\overline{A \text { and } B})=I-P(A$ and $B)=I-.5=.5$

Given $P(E)=.08$

1) write $P(E)$ in $\%$.

$$
P(E)=.08=.08(100) \%=8 \%
$$

2) write $P(E)$ in reduced fraction.

$$
\begin{equation*}
.08 \text { Math } 1: \text { Wrac Enter } \tag{2}
\end{equation*}
$$

3) find $P(\bar{E})$ in decimal

$$
P(E)=1-P(E)=1-.08=.92
$$

Complement rule
4) find $\frac{P(E)}{P(E)}$ in reduced fraction. .08 - -92 Math 1:1 Proc Enter $\frac{2}{23}$
5) find $\frac{P(\bar{E})}{P(E)}$ in reduced fraction.

$$
x^{-1} \text { Enter } \frac{23}{2}
$$

6) Construct Venn Diagram for event E.

Mar 8-7:24 AM

Given $P(A)=.55, P(B)=.25, A \xi B$ are

1) $P(\bar{A})=1-P(A)=.45$
2) $P(A$ or $B)=$
3) $P(\bar{B})=1-P(B)=.75$

$$
P(A)+P(B)-P(\text { fond } B)=
$$

$$
.55+.25-0=.8
$$

3) $P(A$ and $B)=0$
4) Construct Venn Diagram
5) find $\frac{P(B)}{P(\bar{B})}$ in reduced fraction $.25 \% .75$ MATH $1: 0$ Fac Enter

$$
\text { Total }=1
$$

7) Find $\frac{P(\bar{B})}{P(B)}$ in reduced fraction.
3

$$
\frac{3}{1}
$$

Given $\quad P(A)=.125$

1) find $P(\bar{A})=1-P(A)=1-.125=.875$

Complement Rule
2) Find $\frac{P(A)}{P(\bar{A})}$ in reduced fraction. .125 园. 875 MATH 1: Wrac Enter $\frac{1}{7}$
3) find $\frac{P(\bar{A})}{P(A)}$ in reduced fraction.

$$
\frac{7}{1}
$$

Introduction to odds:
Odds in favor of event E are

odds against event E are $b: a$.
Always simplify

I flip a coin 40 times, and it landed tails 24 times.

$$
P(\text { Tail })=\frac{24}{40}=\frac{3}{5}
$$

24 Tails

$$
\frac{16 \overline{\text { Tails }}}{40 \mathrm{flips}}
$$

odds in favor of landing tails:
\#tails: \# tails

$$
24: 16 \Rightarrow 3: 2
$$

Divide by 8
odds against landing tails: $2: 3$

Mar 8-7:53 AM

Roll a fair die

$$
P(\text { get } 6)=\frac{1}{6}
$$

odds in favor of getting 6:

$$
\begin{aligned}
& \# 6: \# \overline{6} \\
& {[1: 5]}
\end{aligned}
$$

odds against getting 6: $5: 1$

A standard deck of playing cards has 52 Cards and 4 Aces.

$$
\begin{aligned}
& P\left(\text { Select } A(e)=\frac{4}{52}=\frac{7}{13}\right. \\
& P(\text { Select } \overline{\text { Ace }})=\frac{48}{52}=\frac{12}{13}
\end{aligned}
$$

odds in favor of getting Ace:

odds against getting Ace:

$$
12: 1
$$

Mar 8-8:02 AM
odds in favor of event E are $a: b$

$$
P(E)=\frac{a}{a+b}, P(\bar{E})=\frac{b}{a+b}
$$

ex: Suppose odds in favor of event E are ex. Out of 20 attempts 3:17 E happens 3 times

$$
P(E)=\frac{3}{3+17}=\frac{3}{20}
$$ 17 times

$$
17=\frac{17}{20}
$$

odds for Lakes to win the Championship this year are 1:49.

$$
P\left(W_{\text {in }}\right)=\frac{1}{1+49}=\frac{1}{50} \quad P(\bar{W})=\frac{49}{1+49}=\frac{49}{50}
$$

If we have $P(E)$, then
odds in favor of event E are

$$
P(E) \because P(\bar{E})
$$

odds against event E are

$$
P(\bar{E}): P(E)
$$

ex: Given $P(E)=.08$

1) $P(\bar{E})=.92$
2) odds in favor of event E are $P(E): P(\bar{E})$

$$
.08: .92 \leftrightarrow 2: 23
$$

.08 目. 92 Math 1: wrac Enter

3) odds against event $E \rightarrow 23: 2$

Use: for oddS.
Use - for Prob.

Prob. of winning a certain game is .125 .

1) $P(W)=.125$

$$
\text { 2) } P(\bar{w})=.875
$$

3) odds in favor of winning. \$ bet

$$
P(w): P(\bar{w})
$$

Profit.

$$
.125: .875
$$

4) odds against Winning $7: 1$

Prob. of event E is .25 .

1) $P(E)=.25$
2) $P(\bar{E})=.75$
3) odds in favor of event E.

